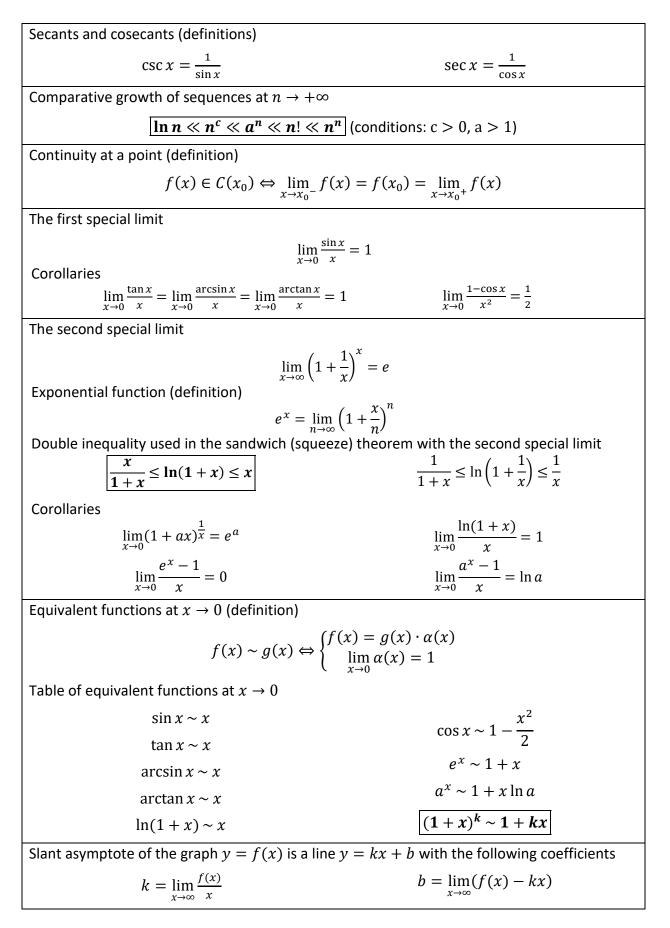
Calculus. Limits and derivatives



The Intermediate Value Theorem. A function continuous on a closed interval *attains all the intermediate values* between its values at the endpoints.

The Root Theorem. If a function continuous on a closed interval attains the values of opposite signs at the endpoints, then it must have *at least one root* inside this interval.

The Extreme Value Theorem. A function continuous on a closed interval *attains its minimal and its maximal values* on this interval.

The Boundedness Theorem. A function continuous on a closed interval is *bounded*. Derivative (definition)

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Differential (definition)

$$df(x) = f'(x)dx$$

Linear approximation

$$f(x + dx) = f(x) + df(x) = f(x) + f'(x)dx \quad \Rightarrow \quad \boxed{f(x + \Delta x) \approx f(x) + f'(x)\Delta x}$$

Criterion of differentiability

f(x) is differentiable at a point $x = x_0$ if it is continuous at $x = x_0$ and side derivatives at $x = x_0$ are equal, i.e. $f_-'(x_0) = f_+'(x_0)$.

The chain rule

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

Notation $(h(x))|_{x=s(x)}$ means that variable x in the function h(x) should be substituted by the function s(x). So, the chain rule could be rewritten as following: $(f(g(x)))' = (f'(x))|_{x=g(x)} \cdot g'(x)$.

Partial derivative (notation)

$$\partial_x F(x, y) = \frac{\partial F(x, y)}{\partial x}$$

Derivative of an implicit function y given by an implicit equation F(x, y) = 0

$$y'(x) = -\frac{\partial_x F(x, y)}{\partial_y F(x, y)}$$

Example from microeconomics. If u(X,Y) is a utility function (that means u(X,Y) = c is an equation of an indifference curve for any constant c), $MU_X = \partial_X u(X,Y)$ and $MU_Y = \partial_Y u(X,Y)$ are functions of marginal utility of each good, then marginal rate of substitution of good X for good Y is $MRS_{XY} = -\frac{dY}{dX} = \frac{\partial_X u(X,Y)}{\partial_Y u(X,Y)} = \frac{MU_X}{MU_Y}$.

Inverse function $f^{-1}(x)$ (definition)

$$f^{-1}\big(f(x)\big) = x$$

Derivative of the inverse function

$$\left| \left(f^{-1}(x) \right)' \right|_{x=x_0} = \frac{1}{f'(f^{-1}(x_0))}$$

Logarithmic derivative

$$(\ln f(x))' = \frac{f'(x)}{f(x)}$$

Equation of a tangent line to the graph y = f(x) at the point x_0

$$t(x) = f'(x_0) \cdot (x - x_0) + f(x_0)$$

Equation of a normal line to the graph y = f(x) at the point x_0

$$n(x) = -\frac{1}{f'(x_0)} \cdot (x - x_0) + f(x_0)$$

Average rate of change of the function f(x) on [a, b] is f(b) - f(a)

$$\frac{b-a}{b-a}$$

Clarification. f(x) should be continuous on [a, b] and differentiable on (a, b). **The Mean Value Theorem (Lagrange Theorem)** Let f(x) be continuous on [a, b] and differentiable on (a, b).

Then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

The Rolle's Theorem (a special case of MVT) Let f(x) be continuous on [a, b] and differentiable on (a, b) and f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0. The L'Hospital's Rule If 1) $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \lor \pm \infty$, 2) f(x), g(x) are differentiable around point x = a, 3) $g'(x) \neq 0$ around point x = a, then $\frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{\lim_{x \to a} f'(x)}{\lim_{x \to a} g'(x)}$

 $x \rightarrow a$

 $x \rightarrow a$